વિધેય $f(x) = \frac{x}{{1 + \left| x \right|}},\,x \in R,$ નો વિસ્તાર મેળવો.
$R$
$(-1,1)$
$R-\{0\}$
$[-1,1]$
જો $\sum\limits_{k = 1}^{10} {f\,(a\, + \,k)} \, = \,16\,({2^{10}}\, - \,1),$ કે જ્યાં વિધેય $f$ એ દરેક પ્રાકૃતિક સંખ્યા $x, y$ માટે $f(x + y) = f(x) f(y)$ નું પાલન કરે છે અને $f(1) = 2$ તો પ્રાકૃતિક સંખ્યા $‘ a '$ મેળવો.
વિધેય $f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right)$ ને વ્યાખ્યાયિત થવા માટે $\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$ માંથી મહતમ અંતરાલ મેળવો.
ધારોકે $R =\{ a , b , c , d , e \}$ અને $S =\{1,2,3,4\}$ તો $f( a ) \neq 1$ હોય તેવા $f: R \rightarrow S$ વ્યાપ્ત વિધેયોની સંખ્યા $.........$ છે.
વિધેય $f(x) = \log \cos 2x + \sin 4x$ નુ આવર્તમાન મેળવો.
સાબિત કરો કે $f: R \rightarrow R ,$ $f(x)=[x]$ દ્વારા વ્યાખ્યાયિત મહત્તમ પૂર્ણાક વિધેય $(Greatest\, integer \,function)$ એક-એક પણ નથી અને વ્યાપ્ત પણ નથી. અહીં, $[x]$ એ $x$ થી નાના અથવા $x$ ને સમાન તમામ પૂર્ણાકોમાં મહત્તમ પૂર્ણાક દર્શાવે છે. બીજા શબ્દોમાં $x$ થી અધિક નહિ તેવા પૂર્ણાકોમાં સૌથી મોટો પૂર્ણાક $x$ છે.